
Calculus Review

Rob Rohan

Review Notes Pre-Calculus
⇒ Rule or note

Definitions
• Polynomial

Polynomial Degree Example
Constant or Zero Polynomial 0 6
Linear Polynomial 1 3x+ 1
Quadratic Polynomial 2 4x2 + 1x+ 1
Cubic Polynomial 3 6x3 + 4x3 + 3x+ 1
Quartic Polynomial 4 6x4 + 3x3 + 3x2 + 2x+ 1

Simplify: Property of square roots

⇒
√
AB =

√
A
√
B

• Simplify:

√
4x10

• Solution:

=
√

4
√
x10

= 2
√
x10

= 2x5
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Solve for u

−9
5 = 1

2u−
4
3

First, eliminate the fractions. LCD of 1/2, 4/3, 9/5 is 30

⇒ The least common denominator (LCD) of two fractions is the least common
multiple (LCM) of their denominators.

30(−9
5) = 30(1

2u−
4
3)

Use the distributive property:

30(−9
5) = 30(1

2u) + 30(−4
3)

(−30× 9
5 ) = (30× 1

2 )u+ (−30× 4
3 )

−54 = 15u− 40

−14 = 15u

−14
15 = u

Radicals

Solve for y:

√
y − 13− 1 = 5

First isolate the radical:

(
√
y − 13)2 − 12 = 52

y − 13− 1 = 25

y − 13 = 26

y = 39
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Radicals: Multiply √
2(
√

3− 11)

distribute: √
2×
√

3−
√

2× 11
√
AB =

√
A
√
B √

2× 3−
√

2× 11
√

6−
√

2× 11
√

6 and
√

2 are not like radicals, so:
√

6− 11
√

2

Radicals: No solution
12 +

√
v + 5 = 4

√
v + 5 = −8

⇒ The square root of something can not be negative, so this is no solution (ignore√
−1)

Unit Circle: Find the exact value of

cos 7π
4

(
√

2
2 ,
−
√

2
2 ) = 315◦

Domain and range

A relation is a set of ordered pairs.

⇒ The domain of a relation is the set of all first elements in the ordered pairs.

⇒ The range is the set of all second elements in the ordered paris.

Give the domain and range for T (assume using set notation):

T = {(0,−9), (7,−1), (−9, 6), (7, 9)}

domain = {0, 7,−9}

range = {−9,−1, 6, 9}
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Figure 1: Unit Circle
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Solving a rational equation that simplifies to a linear

Solve for u:

8 = − 6
u+ 8

⇒ Note: u can not be −8 because that would make 0 in the denominator.

Get rid of the fractions:

(u+ 8)
1 × 8 = − 6

u+ 8 × (u+ 8
1 )

8(u+ 8) = −6

8u+ 64 = −6

8u = −70

u = −70
8

u = −35
4

Simplifying a ratio of polynomials using GCF

Simplify:
6x2 − 15x
3x2 − 24x

Factor the numerator. GCF of 6x2 and 15x is 3x

3x(2x− 5)
3x2 − 24x

Factor the denominator. GCF of 3x2 and 24x is 3x

3x(2x− 5)
3x(x− 8)

2x− 5
x− 8
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Translating a graph

Shift to the right c units: $ y = f(x-c) $

Shift to the left c units: $ y = f(x+c) $

Shift to the up c units: $ y = f(x)+c $

Shift to the down c units: $ y = f(x)-c $

Rationalize the denominator √
3
10

⇒ Quotient property for square roots
√

A
B =

√
A√
B
:

√
3√
10

⇒ Times 1 or
√

10√
10

√
3√
10
×
√

10√
10

√
3× 10√
10× 10

√
30
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Completing the square

Fill in the blank to make the expression a perfect square:

v2 − 12v + �

Find 1
2 of the coefficient of v: 1

2 × (−12) = −6

Square the result of the last step: (−6)2 = 36

v2 − 12v + 36
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Find slope given two points

Find slope of points: (−7, 8) and (5,−7) ((x, y))

⇒ slope = rise
run or slope = y2−y1

x2−x1

−7− 8
5 + 7
−15
12

−5
4

Factor: difference of squares

⇒ A2 −B2 = (A+B)(A−B)

Factor:
49− 64x2

72 − (8x)2

(7 + 8x)(7− 8x)

Rewrite the expression without an exponent
1

2x−4

⇒ a−n = 1
an

⇒ 1
a−n = an

x4

2

7



Factor out a constant before a quadratic

4x2 − 12x− 72

Factor out a 4:

4(x2 − 3x− 18)

⇒ Quadratic “plus times thing”. . . What two numbers multiply together to
give −18 (the third number in the equation above), and also add together to
give 3 (the second number in the equation above)?

p+ q = �

p ∗ q = �

It’s −6 and 3. −6 + 3 = 3 and −6× 3 = −18.

You then use those to to fill out the difference of squares bits:

4(x+ 3)(x− 6)

Graph the function

f(x) = −4x2 + 5

Feed in values starting from −2 and go to 2 to get a few points:

x −4x2 + 5 (x, f(x))
−2 −4(−2)2 + 5 (−2,−11)
−1 −4(−1)2 + 5 (−1, 1)
$ 0$ −4(0)2 + 5 (0, 5)
$ 1$ −4(1)2 + 5 (1, 1)
$ 2$ −4(2)2 + 5 (2,−11)

The answer to this equation is a parabola with it’s vertex at (0, 5)

Roots of a quadratic equation with leading coefficient

Solve for w:
3w2 − 2 = −w

Make it equal to zero:
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3w2 + w − 2 = 0

⇒ Use the quadratic “plus times thing” (see above), but we have to get the first
term’s 3 involved now: −2 ∗ 3 = −6 and −2 + 3 = 1 . . . −6, 1

p ∗ q = −6

p+ q = −6

(3w − 2)(w + 1) = 0

Would be true only if one of those above equaled 0 (zero times something equals
zero). So, 3w − 2 = 0 or w + 1 = 0.

w = 2
3 ,−1

Multiply polynomial (Quadratic times Linear)

(6v − 2y + 5)(v − 7)

Distribute:
6v(v − 7)− 2y(v − 7) + 5(v − 7)

6v2 − 42v − 2vy + 14y + 5v − 35

Combine like terms:
6v2 − 37v − 2vy + 14y − 35

Factor multi-variable addition

30u3w5x6 + 24u7w8

⇒ GCF = 6u3w5 - the smallest variable is the greatest common factor.

6u3w5(5x6) + 6u3w5(4u4w3)

6u3w5(5x6 + 4u4w3)
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Simplify quadratic fraction

3w2 + 9w + 6
w2 + 5w + 6

Factor the numerator - pull out a 3:

$ = 3(xˆ{2}+3w+2) $

Do the (plus times thing):

$ = 3(w+1)(w+2) $

Factor the denominator (plus times thing):

$ = (w+3)(w+2) $

3(w + 1)(w + 2)
(w + 3)(w + 2)

Cross out like terms:

3(w + 1)
(w + 3)

Multiply quadratic and linear fraction

x2 − 1
x+ 2 ×

3x+ 6
x2 − 4x+ 3

Simplify terms:

⇒ x2 − 1 = (x+ 1)(x− 1)

(x+ 1)(x− 1)
x+ 2 × 3(x+ 2)

(x− 1)(x− 3)

Remove like terms (cross):

(x+ 1)
1 × 3

(x− 3)

Multiply:

(x+ 1)
1 × 3

(x− 3) = 3(x+ 1)
x− 3

Simplify:
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3x+ 3
x− 3

Divide quadratic and linear fraction
4x+ 24

5 ÷ 8x+ 48
3

Multiply by the reciprocal:

4x+ 24
5 × 3

8x+ 48

Simplify:

4(x+ 6)
5 × 3

8(x+ 6)

Cross out like terms, multiply, simplify:

4
5 ×

3
8

12
40
3
10

Least Common Multiple (LCM)

Find the LCM of 9c3 and 6c

18c3

⇒ The LCM is the first number both of the integer parts can both divide into,
and the variable part is the largest one in the set.
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Least Common Denominator (LCD)

Find the LCD of: 1
x−3 and 8

x+3

⇒ Find the LCM of the denominator. Since there isn’t one in this example, you
take the product.

(x− 3)(x+ 3)

Equivalent ration expressions

Fill in the blank to make equivalent ration expressions:

2w
w − 7 = �

(w − 7)(w − 3)

Note that (w − 3) is missing from the starting fractions denominator. Multiply
by 1 to fix that:

2w
w − 7 ×

(w − 3)
(w − 3) = 2w2 − 6

(w − 7)(w − 3)

� = 2w2 − 6

Subtract fraction with variables
5
3 −

7
4c

⇒ Denominators must be the same; LCD = 12c
5
3 ×

4c
4c = 20c

12c

7
4c ×

3
3 = 21

12c

20c
12c −

21
12c = 20c− 21

12c

Subtract linear fraction
8c+ 3

3c − 7c+ 2
9c

LCD = 9c
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8c+3
3c ×

3
3 = 24c+9

9c

24c+ 9
9c − 7c+ 2

9c

17c+ 7
9c

Sine Cosine Tangent (SOH CAH TOA)

Figure 2: Opposite Adjacent Hypotenuse

⇒ a2 + b2 = c2

Add linear fraction
7

x+ 3 + 6
x− 2

LCD = (x+ 3)(x− 2)
7

x+3 ×
x−2
x−2 = 7(x−2)

(x+3)(x−2)

6
x−2 ×

x+3
x+3 = 6(x+3)

(x+3)(x−2)

7(x− 2)
(x+ 3)(x− 2) + 6(x+ 3)

(x+ 3)(x− 2)

13



Figure 3: SOH CAH TOA

7x− 14
(x+ 3)(x− 2) + 6x+ 18

(x+ 3)(x− 2)

13x+ 4
(x+ 3)(x− 2)

Divide fractions
10
9

5
2 − 4

Simplify the denominator. Use LCD
5
2 − ( 4

1 ×
2
2 ) = 5

2 −
8
2 = − 3

2

10
9
− 3

2

Multiply by the reciprocal instead:

10
9 ×−

2
3

−20
27
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Divide linear fractions
x−3
x5

x−3
x

Rewrite as division to not blow your mind.

x− 3
x5 ÷ x− 3

x

Reciprocal to make it multiplication:

x− 3
x5 × x

x− 3

Cancel common factors:

1
x4 ×

1
1

1
x4

Radical expressions

Write the following as a radical expression:

142
5

⇒ Rules of exponents: xm
n = n

√
xm = ( n

√
x)m

⇒ n
√
xm must be a real number always when n is odd. When it is event only

when x >= 0.

5√142

Simplified radical form Write in simplified radical form:

3
√

81

Cube root, focus on perfect cubes. . .

8 = 23 16 = 24 32 = 25

27 = 33 81 = 34 243 = 35
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64 = 43 256 = 44 . . .
125 = 53 . . . . . .

Write the perfect cube root as a factor

3
√

27× 3

Rewrite 27 as a cube root (from the table above)

3
√

33 × 3

⇒ Using the rule n
√
ab = n

√
a× n
√
b

3√33 × 3
√

3

⇒ Using the rule n
√
an = |a| for positive a

3× 3
√

3

3 3
√

3

Notes ∫ b

a

f(x)dx∫∫∫
f(x, y, z)dxdydz

~v =< v1, v2, v3 >

~v · ~w

[
1 2 3
4 5 6

]
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